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ABSTRACT 

Deterioration of gas turbine component condition 

leads to degradation of performance, efficiency, reliability 

and safety. Accurate monitoring and advanced analysis of 

gas turbine performance offers great potential to minimize 

life cycle costs and maximize performance and availability 

and thereby revenues. Implementing advanced 

performance monitoring tools for a fleet of engines can 

save millions of dollars by improving availability and 

reliability of the machines. OPRA Turbines has more than 

100 of its OP16 2MW class gas turbines installed 

worldwide. Using B&B-AGEMA’s GTPtracker software, 

an online real-time condition monitoring and prognostics 

system has been developed. A detailed model of the OP16 

engine has been used to simulate deterioration and failure 

effects, generating signatures for condition assessment on 

component level. The signatures are stored in the 

GTPtracker monitoring database in the form of rule sets 

that can be correlated also to condition monitoring 

information from different disciplines such as vibration 

and lubrication. Performance data matching a rule set 

indicates specific component deterioration and failure 

modes.  Rule set matches are automatically detected and 

translated into maintenance decision support information, 

thereby helping to minimize life cycle costs. The concept 

is used for both diagnostics, detecting and isolating current 

engine problems, and prognostics for predicting problems 

by extrapolating trend functions. The system is highly 

flexible and end user configurable. The paper gives an 

overview of the system and methodologies applied with 

generic examples. For the OPRA OP16 gas turbine, two 

case studies are presented demonstrating specific 

component deterioration detection and sensor fault 

isolation. 

 

NOMENCLATURE 

EGT Exhaust Gas Temperature [K] 

GPA Gas Path Analysis 

GUI Graphical User Interface 

NGV Nozzle guide vane 

PR Pressure ratio [-] 

PW Power [kW] 

PWc Corrected power [kW] 

PT2 Total inlet pressure [bar] 

SFC Specific fuel consumption [kg/kWh] 

TT2 Total inlet temperature [K] 

TT3 Compressor exit total temperature [K] 

TT3c TT3/ θ [-] 

TT45 Gas generator exit temperature  [K] 

 (twin spool) 

TT45c TT45/ θ [-] 

VIGV  Variable inlet guide vanes 

Wc Corrected mass flow  [kg/s] 

δ PT2 / 1.01325 [-] 

θ  TT2 / 288.15 [-] 

INTRODUCTION 

For condition monitoring to diagnose, track and 

predict the health of gas turbines, three separate major 

areas can be identified: performance, vibration and the 

lubrication/oil system. While the monitoring of vibration 

and the oil system is common with other types of rotating 

machines, the monitoring of the gas turbine aero-

thermodynamic performance has several specific elements. 

Many publications describe how performance 
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measurement data can be translated into information on the 

physical condition of components and parts (Doel, 1992; 

Visser, et al., 2006; Volponi, 2014). 

While simple gas path analysis methods provide 

information on the health of the whole system (for 

example in terms of EGT and power output margins), more 

advanced methods generate condition information at 

component or part level. This offers much more potential 

for optimizing the maintenance concept but requires 

models establishing the relations between the conditions of 

individual components and gas path measurements.  

An early publication by Urban (1972) presents the 

relationships that need to be included in these models in 

Figure 1. 

 
Figure 1 Relations between physical degradation 

mechanisms and observable performance parameters 

(source Urban (1972)). 

Besides the aero-thermodynamic models capable of 

describing these relations, methods are also used that 

employ empirical models generated from longer term 

history of performance and maintenance to establish the 

relations. These include genetic algorithms, neural network 

and other ‘machine learning’ methods (Bin, et al., 2000; 

Sampath, et al., 2002). The problem with these methods is 

that they cannot detect or predict problems that have not 

yet occurred. Still they may form a valuable complement 

to the physical model-based method to identify 

correlations among effects that are not covered by the 

models. 

Advanced model-based gas path analysis (GPA) tools 

exist that can accurately detect problems on component 

level, providing valuable maintenance decision support 

information (Aretakis, et al., 2002; Mathioudakis, et al., 

2000; Visser, et al., 2004). However, these tools mostly 

require manual interaction by skilled engineers. Several 

concepts applying this concept continuously and on-line 

exist but add significant complexity and problems with 

reliability (Volponi, 2014). Recently, neural networks, 

fuzzy logic and similar machine learning machine learning 

methods relying on large amounts of field data have been 

proposed to mitigate reliability problems (Tang, 2018; 

Zaccaria, 2018) but still suffer from complexity. 

However, to have continuous online engine condition 

analysis, even with a limited level of reliability, would 

provide huge benefits in terms of maintenance (cost), 

reliability and availability. For the OPRA OP16 gas 

turbine, it is concluded a method is required that offers 

robust advanced GPA capabilities for online monitoring, 

with limited complexity.  

OPRA OP16 GAS TURBINE  

OPRA Turbines develops, manufacturers, markets and 

maintains gas turbine generator sets. The generator sets are 

powered by the robust and efficient OP16 gas turbine, 

which is rated at 1.85 MWe. The generator package is 

delivered as a containerized solution that includes the 

OP16 gas turbine, fuel systems, generator, control system, 

air intake and ventilation system. The generator sets can be 

provided in a variety of configurations to meet specific 

customer requirements. These sets can be installed as 

single or multiple units, covering installation requirements 

from 1.5 to 10 MWe power output.  

 
Figure 2. The OPRA OP16 gas turbine (courtesy of OPRA 

Turbines). 

The OP16 (Figure 2) is a single-shaft all-radial gas 

turbine for industrial, commercial, marine and oil & gas 

applications. Since its market introduction more than 130 

generator sets based on the OP16 gas turbine have been 

delivered worldwide. The OP16 gas turbine features a 

single stage centrifugal compressor with a nominal 

pressure ratio of 6.7:1. The moderate pressure ratio reduces 

the need for gas compression prior to introducing the fuel 

into the gas turbine. The radial turbine wheel, which is 

mounted back-to back with the compressor, has been 

aerodynamically optimized to achieve a high efficiency. 

The compact compressor/turbine configuration permits the 

use of an overhung rotor assembly where the bearings are 

located on the cold side only. The all-radial configuration 

makes the OP16 robust and insensitive to foreign object 

damage and fuel contaminants. The combustion system 

consists of four reverse flow can combustors, making 

maintenance access convenient and establishing a uniform 

temperature and flow distribution into the turbine. The 

OP16 has a high exhaust gas temperature making it 

suitable for combined heat and power (CHP) applications. 

Typically, the power output is controlled by exhaust gas 

temperature. For more details of the OP16 and its 

application in CHP installations refer to Axelsson (2015). 

OPRA’S REMOTE CONDITION MONITORING 

SYSTEM 

Today there is a clear trend that gas turbine users 

choose long term service agreements with different options 

and choices from a range of packages. These packages 

vary in extent and can include scheduled maintenance, 

6.7:1 ratio 
compressor

Dual-fuel, low emissions and 
low calorific fuel 
combustors(4)

High-efficiency radial 
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unscheduled maintenance and/or engine overhaul. Being 

able to accurately monitor and perform advanced analysis 

will minimize the life cycle costs and maximize the 

performance and availability of the units. Therefore, 

OPRA has implemented a remote condition monitoring 

system for its OP16 fleet.  

 

 
Figure 3. Set-up of OPRA's remote condition monitoring 

system. 

A remote condition monitoring system offers the 

clients many benefits including: 

 High availability by improving the maintenance 

planning and avoid unplanned outages 

 Reduced fuel consumption by preventing undetected 

performance degradation 

 Enhanced safety by reducing the risk of catastrophic 

failures  

 Access to all the data enabling quick and accurate 

response on issues from the OEM  

 

A schematic of the set-up of OPRA’s remote 

monitoring infrastructure is shown in Figure 3. The system 

is implemented in a purpose designed and dedicated cloud 

environment. Within the data center the servers responsible 

for the connectivity and application are separated on 

several virtual servers. This ensures security, integrity and 

reliability of the infrastructure. 

The units in the field send data to a central database 

server.  On the customer site the remote monitoring exists 

of two parts; a router that provides the provision to 

establish the remote connection in a secure manner and an 

HMI computer collecting the data and forwarding it to the 

central database server. To enable secure transfer of the 

data from the sites to the centralized database a VPN 

tunnel is established. In this approach the centralized VPN 

connector is the client connecting to the VPN server 

running on the routers. This approach limits the impact of 

a VPN server being attacked.  

The diagnostics center is located at OPRA’s 

headquarters in the Netherlands, where a team of engineers 

are monitoring and supporting the OP16 fleet. The 

GTPtracker is connecting to the database and updates the 

fleet status and provides information on critical events. By 

utilizing a software such as GTPtracker, which includes a 

high level of automation, the diagnostic engineers can 

focus on providing correct advice to the customers and/or 

service team rather than processing data. 

SURROGATE MODELS 

A concept has been developed to separate the physical 

gas path analysis models from the on-line monitoring 

methods using surrogate models. The general idea is to 

derive a model with only the relations required for the 

online GPA from a comprehensive (off-line) 

thermodynamic cycle model.  

The off-line cycle model must be capable of  

1. predicting reference engine performance for the entire 

operating envelope. This includes operation conditions 

such as  

 power setting (e.g. EGT, Torque load, fan speed),  

 ambient and inlet conditions (pressure, 

temperature, humidity),  

 fuel type,  

 variable geometry settings (e.g. VIGV). 

2. predicting the effects of specific deterioration modes, 

failures and faults on performance. 

 

Reference performance data must then be aggregated 

into relations between expressions of performance 

parameters that correct for the inlet operating conditions 

(represented by δ and θ) as much as possible. The off-line 

cycle model is used to validate various expressions in their 

success of successfully ‘capturing’ performance for 

varying operating condition is a single line, or if not 

possible, a set of lines for different variable geometry 

positions or fuels for example. This should optimally lead 

to a single base line relation between semi-non-

dimensional expressions for power and a power setting 

variable like EGT for example. The method applied is 

similar to the ‘model based parameter correction’ method  

described by Kurzke (2003) and the ‘empirical parameter 

correction method’ described by Volponi (1998).  

In Figure 4 an example is given of the derivation of a 

baseline equation for the power output of a 2-spool 

turboshaft. Using the GSP Gas turbine Simulation Program 

(Visser and Broomhead, 2000). The top graph shows actual 

power curves versus TT45c (i.e. gas generator exit 

temperature divided by θ) for a range of operating 

conditions. The second graph shows corrected power, 

calculated using the expression 

 

 

𝑃𝑊𝑐 =
𝑃𝑊

𝜕𝑎   𝜃𝑏  
+ 𝑐. 𝛿 + 𝑑. 𝜃 + 𝑒 
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Figure 4  Development of baseline for power for a twin 

spool industrial turboshaft 

 

For standard ISA corrected (or ‘referred’) power, a=1, 

b=0.5 and c=d=e=0. Often however, these constants need 

to be slightly adapted to make all curves (for different 

conditions) better coincide (within a predefined margin) 

into a single PWc curve in the area of interest, so 

performance for all operating conditions can be 

represented indeed by a single curve. The deviation margin 

due to varying operating condition usually must be within 

1% to avoid interference with deviations due to component 

condition changes. In the example of Figure 4 only b is 

changed from 0.5 (for PWc) to 0.45 (PWc_Theta045) 

resulting in a better coinciding in the high power (high 

TT45c) range which is preferred for gas path analysis and 

diagnostics. This relation can subsequently be curve fitted. 

The polynomial fit only needs to match the PWc curve in 

the range of interest (in this case above a TT45c of 1000 

K), which often is at or near base load operation (i.e. 1100 

K), where full steady-state, required for accurate 

comparison with base line performance, is reached. In this 

example, a linear fit perfectly represents reference power 

above the 1000 K level, providing an accurate (<0.5%) 

baseline for baseload operation: 

 

 
𝑃𝑊𝑐𝑟𝑒𝑓 = 9900 + (TT45 − 980) ∙ 12.9 

 

 

It is clear that for this example an additional relation 

would have to be added if analysis at part load would be 

required. 
 

 
Figure 5  Surrogate model curve fit 

 
Figure 6  GTPtracker condition index example 

CONDITION INDICES 

In GTPtracker, online measured operating condition 

data is fed to the surrogate models and compared to the 

value of the corrected parameters calculated from actual 

measured performance. The deviations are indications for 

component condition parameters such as efficiency, 

pressure loss or flow capacity. In GTPtracker, deviations 

from the surrogate baseline model are named ‘condition 

indices’, as shown in Figure 6. 

To identify specific problems in the engine, 

combinations of indices must be analyzed because only a 

single index deviation may be caused by several different 

problems. The analysis of combinations of indices is done 

online using GTPtracker rulesets. 

RULESETS 

Rulesets in GTPtracker are combinations of conditions 

for indices. For example, matching a ruleset may require 

the power index to be lower than -5%, while also an index 

TS Tshaft : Baselines
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for the compressor pressure ratio must be lower than -4 % 

and another index for some temperature must also lie in a 

certain range. This could then mean the compressor can be 

isolated as being the cause of the performance deviation.  

A cycle model capable of simulating deterioration and 

faults in the gas path such as GSP (Visser and Broomhead, 

2000) can be used to determine or validate the rulesets. It 

is important to verify if indeed the ruleset uniquely relates 

to the specific problem. Experience from the field may 

subsequently be used to finetune the rulesets. The rulesets 

must also be set to capture effects beyond the measurement 

uncertainty to minimize false alarms. 

DIAGNOSTICS 

With well configured and validated rulesets, 

diagnostics can be performed on component level, either 

manually but also automatically and continuously on new 

incoming data points. The rulesets are related to 

maintenance types. Depending on the ruleset maintenance 

type, items are added to the maintenance calendar 

providing maintenance decision support. Figure 7 depicts 

the process. The surrogate reference model performance 

indices are compared with the measured indices; deviation 

patterns are compared against the rulesets providing 

diagnostic information. Rulesets can be developed using 

the off-line model deterioration and fault effect 

simulations.  

 
Figure 7  From baseline model and measured data to 

maintenance decisions 

TRENDING 

A Kalman-filter based trending function is used to 

obtain the most likely trend from measured and calculated 

time series parameters that are subject to noise, sensor 

faults and other irregularities. For the Kalman filter, 

equations similar to those used for the Optimal Tracker 

described by Provost (2015) have been used. This Kalman 

filter is ‘smoothing out’ random noise looking both at the 

actual level and the slope (time derivative). The level and 

slope smoothing factors (‘a1’ and ‘a2’) should be 

optimized for the specific nature and noise of a signal. The 

Optimal Tracker (optionally) relates a2 to a1, leaving only 

a single constant (a1) to fine-tune the trend function. In 

Provost (2015) the benefits of the Optimal Tracker Kalman 

filter for time series analysis of industrial asset 

performance signals are further described. 

The Kalman filter algorithm is configurable for each 

parameter separately, using a user-friendly GUI showing 

the trend result. In addition to a1 (and optionally a2), 

constants can be specified controlling the impact of 

outliers, discontinuities etc. 

In Figure 8 an example is shown of the Optimal 

Tracker trend function for an SFC index (note that these 

are simulated data with SFC varying due to Monte Carlo 

simulated noise on both component model efficiency and 

sensor error). Here a2 is set to -1 (enabling the Optimal 

Tracker relation for a2) and the delta limit is set to 4 

resulting in a reset of the trend (suggesting a discontinuity) 

towards the right end of the plot. 

 
Figure 8  Example of data points, trendline and the 

controls for configuring the trend line Kalman filter 

function 

In general, only time series parameters that are not 

affected by operating conditions that are changing in the 

time series, are suitable for trending. These are ISA 

corrected (surrogate model) performance parameters or the 

condition indices for example. Other examples are 

vibration signals or oil system parameters.  

Another way of excluding effects of operating 

condition variation is filtering out only point of interest 

such as base load or steady state. The GTPtracker Query 

filter offers the user a flexible way of selecting specific 

point types for this purpose. 

PROGNOSTICS 

Automatic prognostics is performed every time new 

data points are added to the time series. For a user 

specified number of most recent point, a regression is 

performed and extrapolated. If the extrapolation hits a user 

specified limit within a specified period, a ruleset check is 

performed. When meeting a ruleset, the same action as 

with diagnostics is taken, adding items to the maintenance 

calendar for maintenance decision support. 
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Figure 9  Prognostics using the condition index trends 

In the example of Figure 9, the prognostics is shown 

at work on 2 condition indices (in this case power and 

efficiency). Both trends show a negative slope which is 

extrapolated and exceed the red line alert limit at a specific 

date. As mentioned in the Trending section, also for 

prognostics, only specific parameters or point types that 

are independent of varying operating conditions, are 

suitable for prognostics. 

ANALYSIS TOOLS 

For analysis of performance history, it is important 

that values and trends of several parameters can be shown 

simultaneously when browsing the data. Also, component 

operating points must be easily assessed and show in 

conjunction with other parameters. In GTPtracker, all 

tables and graphs are synchronized on the selected point in 

time. Moving the selection point through one graph or 

tables, moves the point in all tables. With multiple 

windows or monitors, this way a powerful tool is provided 

to engineers analyzing events in performance historic data. 

Moving to a point in the performance table in Figure 10 for 

example, immediately shows the operating point and 

active speed line in the compressor map in Figure 11. 

 
Figure 10  Performance history table 

 
Figure 11  Compressor performance history 

DATA PROCESSING 

GTPtracker data processing has 3 stages (Figure 12). 

 
Figure 12  GTPtracker data processing scheme 

 Importing data from industrial assets such as power 

plants or other energy systems. A specific selection of 

parameter values are imported from a data source, 

such as a data acquisition or historian database. 

 Filtering data: the data are filtered to only obtain data 

significant for the analysis. This means data points 

where no parameters is changing significantly relative 

to its prior and next neighboring points are skipped. 

The criteria for this filter are user specified. The 

filtering process runs continuously on the GTPtracker 

server. 

 Analyzing the data in the GTPtracker client: a subset 

of data is selected using the Query Filter function to 

select specific periods, ranges of engine operating 

hours (EOH) or cycles, point types and/or states. More 
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detailed filters can be specified by SQL code query 

rules. In addition, query resolution can be defined to 

obtain only one point per user specified number of 

seconds, minutes, hours, days etc. 

ONLINE DATA ACQUISITION 

GTPtracker has various ways of importing data. Both 

manual and on-line data importing are possible. Interfaces 

using SQL querying of historian databases are available for 

several established industry standard historian database / 

asset monitoring systems. For older systems, CSV text 

files can be imported continuously online via the FTP 

protocol. The GTPtracker Server and Import configuration 

service application runs on a Windows server and 

continuously extracts and filters data from the historian. 

For individual analysis cases, data can manually be 

imported from CSV files.  

RULE SET GENERATION 

Using the GSP baseline model of the OP16 engine, a 

few simple deterioration cases have been simulated to 

demonstrate the concept of the ruleset-based diagnostics. 

In The solid curves in Figure 13 show the predicted effects 

of 5% drop in compressor efficiency (point 2) and a 5% 

drop in turbine efficiency (point 3) relative to the reference 

performance (point 1). The operating condition is base 

load which is at a fixed exhaust gas temperature EGT (the 

EGTc set point is 100%). Shown is the effect on 

compressor pressure ratio PR_c, ISA corrected shaft power 

PWc and the change of compressor exit temperature 

dTT3c. 

 

 
Figure 13  OP16 deterioration simulation results 

It is clear the two different cases are easy to isolate 

from each other. With only compressor deterioration, 

pressure ratio remains about constant, power drops and 

TT3c increases. This means a ruleset could be derived 

looking at PR_c and TT3c, isolating the compressor as the 

problem component when a drop in corrected power is 

accompanied by only a rise in TT3c and not a drop in 

PR_c. 

However, usually turbomachinery deterioration cannot 

just be represented by a decrease in efficiency, especially 

with a compressor also flow capacity is negatively 

affected. Turbine flow capacity may increase slightly due 

to the increase in flow cross areas caused by corrosion 

and/or erosion in the NGVs. The dashed curves in Figure 

13 show the case of compressor deterioration with -5% 

efficiency and -2.5% flow capacity change (point 2). Point 

3 is -5% turbine efficiency and +2.5% flow capacity. 

Now the problem is different, especially for PR_c. We 

must accept that the compressor deterioration is an 

unknown combination of efficiency and flow capacity 

reduction, somewhere between the solid and the dashed 

curve cases in Figure 13. However, a ruleset can still be 

derived isolating compressor from turbine problems. 

In Figure 14 a part of a GTPtracker ruleset table is 

shown, with 2 rulesets that both become active if the 

power index is lower than -2 or -3 %. The power and 

pressure ratio indices in the table are directly related to the 

corrected parameters used in the simulation described 

above. Two exclusive areas for the PR index and TT3c are 

SN101_odefs : Case_OD

OP16_det4.mxl

OP16 deterioration

1=ref,  2=compr. 3 = turb.det

GSP 
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defined that would either suggest the compressor or the 

turbine as the root cause of poor performance. 

 
Figure 14 GTPtracker rulesets example 

Figure 14 only shows a subsection of all the rulesets 

for the GTPtracker OP16 configuration. The number and 

detail of rulesets that the user can specify is unlimited. 

Naturally, the rulesets should be finetuned based on 

experience and refinement of the deterioration models in 

the GSP cycle model. Sensor error rules may be added 

using sensor redundancy, avoiding gas path deterioration 

false alarms.     

CASE STUDY I 

Detection of sensor error is important to avoid wrong 

control system- or human action. This section 

demonstrates detection by GTPtracker of a drifting fuel 

flow measurement in an OP16 gas turbine unit in the field.  

Using the end-user configurable functionality of 

GTPtracker to identify the operating state of an engine 

from imported data, base load steady-state points are 

distinguished from other operating states using limits on 

measured rotational speed, exhaust gas temperature, power 

output and bleed valve opening, appropriate to the OP16. 

Usually, the base load data points are subsequently filtered 

out to better trend and analyze engine performance, 

especially the parameters that depend on engine operating 

condition.  

To eliminate the effect of operating conditions, 

performance indices are defined using the semi- end user 

configurable capability of GTPtracker. These include 

power, pressure ratio, thermal efficiency and EGT. Power 

and EGT indices are a ratio of the corrected value to the 

reference value derived from the OP16 baseline model.  

Drifting of a fuel flow measurement is characterized 

by constant power and EGT index trends and a change in 

the trend of thermal efficiency index. Constant power and 

EGT indices imply that the engine is producing the same 

power for a given EGT meaning that all components 

forming the gas flow path are performing at a nominal 

level. Changing of the fuel flow alone in such a scenario 

can only be caused by a faulty measurement resulting in a 

corresponding drift in the measured thermal efficiency. 

These conditions are developed into a ruleset shown in 

Figure 15 which says that if the power and EGT indices 

stay within a specified limit and the thermal efficiency 

index goes out of a specified limit, fuel flow measurement 

fault is suspected. The limits are defined based on a 

combination of OP16 cycle simulations, measurement 

accuracy and experience. The ruleset detected a drifting 

fuel flow measurement at an operational OP16 gas turbine 

engine, automatically adding an item to the maintenance 

calendar. To investigate further, the trend of performance 

indices over the past weeks was filtered out using the 

query filter. A near constant trend of power index and EGT 

index was observed, while the thermal efficiency index 

showed a steady increase over time (Figure 16). The fuel 

flow measurement was thus, identified as the suspect and 

replacing of the fuel flow sensor was added to the on-site 

maintenance plan. Replacing the sensor restored the engine 

performance parameters. It can be seen in Figure 16 that 

towards the end, the thermal efficiency goes back to its 

nominal value. 

CASE STUDY II 

To ensure clean compressor inlet air, it is necessary to 

install filters at the gas turbine inlet. As the filters 

progressively get clogged, the pressure loss in the inlet 

increases, resulting in reduced gas turbine performance 

(efficiency and power). Moreover, failing to replace a filter 

on time can cause it to burst, potentially leading to foreign 

object damage in the gas flow path. This case study 

Figure 15  Ruleset for detecting a drifting fuel flow 

measurement 

Figure 16  Trend of performance indices: thermal 

efficiency index (Eta_index), power index (PWc_index) 

and EGT index (EGT_index) 
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demonstrates the use of prognostics in GTPtracker to 

predict when an inlet air filter would need to be replaced. 

This helps in efficient planning of maintenance activities, 

avoiding damage to the gas turbine and retaining engine 

performance. 

Figure 17 shows the trend of the index for inlet air 

filter loss of an OP16 gas turbine engine operating on-site.  

dPfilter_index is the ratio of measured pressure drop 

across the air inlet fine filter to a reference value, usually 

the pressure drop measured during engine commissioning. 

As can be seen from the graph, the inlet pressure drop 

across the filter stage is increasing over time. A ruleset is 

created that generates the maintenance action of replacing 

the inlet filter when the index exceeds a defined limit (in 

this case 3). The prognostics function predicts that the 

filter will have to be replaced within a few months and 

adds an item (at 22 May) to the maintenance calendar as 

shown in Figure 18. Depending on the type of maintenance 

required and the time available to perform it, the status of a 

maintenance action can vary. In this case, since the fault is 

only predicted by prognostics, and there is some time 

available to carry out the required maintenance, the status 

of the maintenance action is assigned as “Predicted” by 

GTPtracker. The user can change the status to 

“Scheduled”, “Suggested”, “Urgent”, “Anomaly” etc. after 

further analysis, changes in observed trends, and 

maintenance planning. 

 

 

 

CONCLUSIONS 

 An innovative online condition monitoring system has 

been developed for the OPRA OP16 gas turbine using 

the GTPtracker monitoring and tracking tool. 

 The connection of the condition monitoring process 

with accurate cycle models capable of simulating 

deterioration via a surrogate models and rulesets for 

diagnostics offers an optimal compromise between 

complexity and functionality. 

 The GTPtracker environment and configuration user 

interface provides a powerful tool for diagnostics 

engineers to optimize maintenance (minimize costs), 

reliability, availability and safety for the OP16 fleet. 

 A customized version of the GTPtracker tool has 

recently been deployed for the OP16 engine.  
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